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Abstract. A simple theory of the quantum interference in a loop structure due to Larmor
precession of the electron spin is presented in this paper. A ‘spin ballistic regime’ is assumed,
where the phase-relaxation length for the spin part of the wave funcﬂﬁﬁ) is much greater

than the relaxation length for the ‘orbital pa(ILf,f)). In the presence of an additional periodic
magnetic field, the spin part of the electron’s wave function acquires a phase shift due to additional
spin precession about that field. If also the structure lehgghchosen such that&,” > L > ij),

it is possible to ‘wash out’ the quantum interference related to the phase coherence of the ‘orbital
part’ of the wave function, retaining at the same time that related to the phase coherence of the spin
part and, hence, to reveal the corresponding conductance oscillations. It is also shown that strong
modulation of the interference pattern could be achieved in this case.

1. Introduction

Most transport phenomena in condensed matter are described by the Boltzmann kinetic
equation and are classical in nature. However, there are many quantum effects in solid-state
physics which involve the interference of electron waves; among them is the Aharonov—Bohm
(AB) effect [1]. Oscillatory magnetoresistance due to the Aharonov—Bohm effect has been
observed in small metallic rings [2] and in the microstructure consisting of a semiconductor
(GaAs) loop embedded in GaAlAs [3]. A number of papers were concerned with the origin
of these oscillationsh(/e as well agi/2¢); these works treated the charge-carrier transport as
diffusive, however.

In their well-known paper [4], Datta and Bandyopadhyay considered ballistic transport,
and they have shown that it is possible (in principle) to approach even 100% conductance
modulation in a magnetic field. The conditions which the microstructure has to obey are
however very strict. In particular, there should be a ‘single-mode’ regime, which is certainly
difficult to achieve. It should be noted that, so far, researchers have mainly considered the
HamiltonianH = (p — (e/c)A)?/2m* + U(y), whereU (y) is the energy corresponding to
the transverse motion, and almost nobody has taken into account the spirsarof the
Hamiltonian (« is the Bohr magnetor, is the electron spin operatdB, is the magnetic field).

The main reason for neglecting this term is that the Bohr magneton is very small and, as a
result, the energy of the electron charge interaction with the external field is much greater than
that of the spin interaction. However, generally speaking, the spin part of the electron wave
function can also acquire a phase shift in the course of the electron evolution in a magnetic
field and hence cause the conduction of the microstructure to oscillate. The aim of this paper
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is to present a simple theory of quantum interference in a semiconductor mesoscopic structure
which is due to Larmor precession of the spin in a spatially periodic magnetic field under
conditions of ‘spin ballistic transport’.

2. The model and necessary preliminaries

Let us consider a generic microstructure with two end regiens 0 andx > L) and a middle

region 0< x < L, consisting of two channels (see figure 1), similar to the one considered in
[4]. The main difference, however, is that here the external magneticHigid in the plane

of the microstructure and, in addition, on the upper surface of one of the channels there is a
regular array of micromagnets similar to that discussed by von Klitzing and co-workers [5]. It
should be noted that, in fact, the only thing which is really needed is that the magnetic fields
have to be different in the two arms of the loop. The periodic field is not obligatory, and this
choice is motivated by the current interest in the study of electron motion in inhomogeneous
magnetic fields on the nanometre scale [6].

']

|
y = W/2 7
channel 1 V= W2 X
Ty =W
v = W2 channel 2 v
R R S
r
¢
G
x=0 P X =L

Figure 1. A sketch of a two-channel semiconductor microstructure with a magnetic grating on the
top of one of the channels, ¢’, r, ¥’ indicate the transmission and reflection matrices at the two
junctionsx < 0,x > L; P, P’ stand for the propagation matrices in the middle regioa (0 < L).

1: micromagnets (a one-dimensional ferromagnetic grating); 2: the external magnetiBdield

Suppose these micromagnets create within this channel an additional periodic magnetic
field B, of the form
By if2n(a+b) <x<2n(a+b)+a
B1(0,0,B) =Bi(x) =310 ifn@+b)+a<x < m+L(a+b) Q)
—B; f@n+D@a@+b)<x<2n+D(a+b)+a
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wheren =0, 1, 2, . ... Herea is the width of the magnetic strip abds the spacing, so + b

is the half-period of the magnetic grating. This means that the magnetidieldich affects
the electron in the first arm of the structure is equaBte= By, while in the other arm it is
equal toB = By + B;. Suppose that the Hamiltonian of the electro#fis= Hy + H;, where

Ho = (1/2m*)(p — (e/c)A)? + U (r) Hy = —up6B. (2)

Herem* is the electron effective masa4, is the vector potential corresponding to the magnetic
field B, up andaé are the Bohr magneton and the spin operator respectively. We also assume
that U (r) describes conduction band bending due to the space charge and discontinuities
of any band. Sincé{y does not depend on the spin, the wave function is a direct product:
Y(r,s) = ¢(r) ® x(s). For convenience, we will refer tp(r) as the ‘orbital part’ of the
total wave function, keeping in mind that it correspondsipdescribing the charge—field
interaction, and we will refer tg (s) as the spin part of the wave function relatedHg the
spin part of the Hamiltonia# in (2).

Letus now introduce the phase-relaxation Ierlg‘;hforthe spin part of the wave function,
in just the same way as the one usually introduced for the ‘orbital pagt’, Our main
hypothesis is that the phase-relaxation lengfh is much greater thah”’. The reason for
this is quite simple: the electron spin—phonon interaction is much smaller than the electron
charge—phonon interaction. However, it is necessary to make some additional remarks. As is
known, as a rule rigid scatterers such as impurities and other defects of crystalline structure do
not contribute to the phase relaxation; only dynamical scatterers like phonons do. But impurity
scattering can also be phase randomizing if the impurity has an internal degree of freedom
with the result that it can change its state. For example, if magnetic impurities have an internal
spin that fluctuates with time, the collisions with such impurities cause phase relaxation. So,
we suppose there are no such impurities here.

Now if we suppose the microstructure lendtho be chosen such thaf” > L > L, it
is possible to ‘wash out’ the quantum interference related to the phase coherence of the ‘orbital
part’ of the wave function, retaining at the same time that related to the phase coherence of the
spin part, and, hence, to reveal the corresponding conductance oscillations.

Let us add some more comments concerning the phase-relaxation leg‘fgWhich is
connected to the corresponding phase-relaxation tijﬁ%elt is clear that the electron motion
over a timergg” being ‘spin ballistic’ is not ballistic in the usual sense of the word. It means
here that if the momentum-relaxation timg <« r(ff) (which, as we shall see later, is actually
the case), after a time intervak,, the electron velocity becomes randomized, so the electron
trajectory over a period of time{*’ can be represented as the sum of a numbef*(/z,,) of
short trajectories each of the lengthvr7,, (vF is the Fermi velocity), just as is usually done
for the common relaxation timf;ff) (see, for example, [7]). Since the individual trajectories
are directed at random (the directions are determined by the ahglee root mean square
distance travelled by electrons in a particular direction is obtained from the squares of their
lengths:

(s) b4
sz)z = TL(vprm)z(Coszot) (coS a) = / g—a cosa = 1/2
_ T

m

LY =vpyTary’ /2.

It should be noted that the last relation is also valid & with 7 substituted forz*, if
T, < r(/(f) which is often the case.

o

and hence
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In order to estimate the phase-relaxation tirffé, consider a simple model. Let us take a
two-state quantum system (which we shall refer to as subsyddenith excitation energy
interacting with a phonon bath, and identify the two states with ‘spin{up) énd ‘spin-down’
(I4)) states of a spin in an external magnetic field. For simplicity, we suppose the interaction
of the subsystemt with the phonons to be resonant; this means that only those modes of the
phonon bath whose energy is equaktmteract with the two-level subsystem. Other modes
are taken into account indirectly by choosing all mean values of phonon bath parameters to be
equal to their statistical average values at a given temperatufe a result, for the model of
the phonon bath we can take a great numberst 1) of identical non-interacting subsystems
B, with excitation energy.

Thus, the Hamiltonian of the entire system (subsystemphonon bath) is

N
H = s(aTa + Zb}:bn) 3)
n=1

wherea’, a are the Fermi creation and annihilation operators related to the excitations of
subsyster, WhilebZ, b, are Bose creation and annihilation operators related to the excitations
of the of thenth subsystem of the phonon bath.

So, for the subsystems of the equidistant spectra, we have

(blb,) = SP(pab]by) = (exp(Be) — 1)t B =1/ksT

wherep, is the statistical operator for the subsystemsk is the Boltzmann constant; is
the temperature, $p ) is the trace operator.
The interaction of two-level systems with phonons can be described by thé#grm):

N
Hine (1) = ) _[0( — (0 — 1)) — 6t — Tn)] H, 4)
n=1
where
00 — 1 ift>0
D=10 <o

Hn = Eint(aTbn + bla)

andeg;,, is the interaction energy.

The physical meaning of (4) is that the subsystdnnteracts at each time during the
interval  with those subsystents, which did not interact with4 during the previous time
interval, or, in other wordsy is the ‘electron—phonon collision time’. As was mentioned
above, the rigid scatterers do not contribute to the phase relaxation; only the dynamical—that
is, time-dependent—scatterers, such as phonons, do; since we are interested in the estimation
of the phase-relaxation time, the Hamiltonian (4) is explicitly time dependent.

We introduce now two probabilitieg; (1) and p»(¢) for the subsystermt to be, at a time
t, in an excited state and an unexcited one, respectively. It is well known that the steady state
for the two-level system correspondspp = p, = 1/2. As can be shown (see appendix 1),
for the model described above, the timehich is needed for the subsyste#rto achieve the
state withp; = p, = 1/2 is equal to

t = (h*/t€2,) In 2tanhBe/2). (5)

Since the two levels of the subsystedncorrespond to the ‘spin-up’ and ‘spin-down’
states, the steady state corresponds to the redistribution of the initially non-equilibrium spin
distribution due to spin-flip transitions and, hence, to the total destruction of spin coherence.
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Thus, timer is the spin-relaxation time, which can be identified wifi because it relates to
the phase-coherence destruction caused by inelastic scattering by the spin flips.

In orderto estimate ~ rgff) by means of (5), we should estimate first the interaction energy
eimr- One should note that spin flips are possible only when there is spin—orbit interaction [8].
Thus, considering the electron scattering by acoustic phonons, in order to describe the spin flips
one should take into account the spin—orbitinteraction. If we take itég be- (eE/ch)Zag?’,
whereaqg is of the order of the Bohr radius, is about 10%° s (remember that the physical
meaning ofr is the ‘electron—phonon collision time’ which could be estimated as follows: the
shortest momentum-relaxation time is for metals and of the orderdPB)but the ‘collision
time’ cannot be greater than the momentum-relaxation time), the magnetidfislof the
order of 1 T, while the temperature is about 5 K, then for the lzimer(f) we have the result
~2.2x 107 19s,

The values of the spin-relaxation time measured for the complex semiconductors of the
third and fifth groups (A'BY) range widely from 102 to 10~’ s [9], and hence we can
conclude that our estimate fo‘g‘) is quite reasonable. Anyway, we can take it as certain that
9 > ¢/, Indeed, experiments show [10] thateK the phase-relaxation timg* is about
1.6 x 10 *?s and, as a result,’ > L{; hence, the structure lengthcan be chosen to be
suchthat) > L > LY.

3. Calculation of the transmission coefficient

The current/ through the structure considered in the previous section, for the small applied
potentialV, can be written as [4, 7]

== [ 4 [ dkszn (@) - £+ Y T (6)

n.,n'

Herew, is the width of the structure in thedirection,7,, - is the coefficient of transmission

from the state:’ in the left-hand end to the stat€ in the right-hand endE andk, are the

energy and the transverse wave vector of the electrons as they enter from the left-hand end.
Let us suppose for a moment that the structure length is smaller than the phase-relaxation

length; then the charge transport is said to be coherent and one calculates the transmission

coefficient starting from the Sabdinger equation with the Hamiltonian (2). It is well known

[7] that a coherent conductor can be characterized at each energySegnatrix that relates

the outgoing wave amplitudes to the incoming wave amplitudes in the different leads. Thus,

the transmission coefficierf, ,» can be obtained by taking the squared magnitude of the

corresponding element of tifematrix. Taking into account the relatidn(r, s) = ¢(r)® x (s)

and using the property of the direct prodydiz B)(C ® D) = AC® B D, one can demonstrate

thatT, ,» = Ty x» ® T, Where subscript®’, k” relate to the states dfy, while subscripts

o', o’ relate to the states dfl;. Now take into account the fact that the structure length

is greater tharL(). Then, dividing the structure into sections of length smaller thih

one can combine the successive scatters [7] and treat the transport through thé, stases

incoherent, while the transport through the statés” is coherent, because < L. As a

result, we havd,, ,» = (T)T, .+, where(T) is the averaged transmission coefficient which

does not depend on the phase relation between the statksmthe left-hand end and in the

right-hand end of the structure. So, in accordance with the assumptions above, there are two

states (‘spin up’ and ‘spin down’) to consider in the end regions, while in the middle region

there are four states corresponding to the channels 1 and 2. Dropping the subsctpts
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one can write down the following expression for the transmission coeffigi¢hi]:
T ={[I—PrP'v] " Pt @)

Herel is the unit matrix¢ is a 4x 1 matrix describing the transmission from the left-hand end
into the two channels, whilé is a 1x 4 matrix describing the transmission from the channels
into the right-hand end. Similarly,andr’ are 4x 4 matrices describing the reflections at the
two junctions of the channels back into the channels. Matitaad P’ describe forward and
reverse propagation of the electron wave through the channels 1 and 2, respectively. In order
to construct the matricesandr’, let us suppose, j = 1,..., 4 each stand for one of four
states: ‘spin up’ or ‘spin down’ in the channels 1 or 2. Thensthatand for the scattering
from a state of definite spin (‘spin up’ or ‘spin down’) to the same state (in other words, for
‘self-scattering’) in the channels 1 or 2 at the first junction; sgynmeangt) — |4) scattering
in the first channelrsz means|t) — |4) scattering in the second channel and so on. The
same is true for/; but at the second junction, whilg;, ;; stand for the scattering from the
‘spin-up’ state to the ‘spin-down’ state and vice versa or for the scattering between the same
spin states but of different channels at the first and second junctions, respectively.

In accordance with the consideration given in section 2, there are no spiiflips |{))
in the two channels considered, and only the following matrix elementsané non-zero:
r11, Y13, 22, V24, 31, V33, ¥42, V44 (the same is true for the matrix elementsr’of

Hence, the matrices r’ are of the form

ri1 0 r13 0 l’il 0 r13 0
1 0 r2 O r _ |0 0y
"l O r3 O = r3, 0 rjy O
0 ra2 0 raa 0 réz 0 }’ZM

In order to construcP and P/, it is necessary to note that the spin parts of the wave functions
acquire phase factors due to Larmor spin precession abouBtheis. Since the magnetic
fields in the channels are different, these phase factors are also different.

If one treats the ‘spin-up’ and ‘spin-down’ states as two opposite points on a unit sphere
$2, which can be transformed into one another under rotation by an @ngle-r about some
axisa, then the matrix elements describing the phase shifts in the two channels can be written
as

Piy = exptig,) explitn,) Pl = exp(iga) exp(—ioy,) ®)
Py = exp(tig,) expifzp) Py, = exp(xip,) exp(—ifap). 9)

Here we have also formally introduced th@xis (the subscript af; ») which is a unit vector
along the precession axisbtorresponds to the electron propagation fromx O tox = L
while —b corresponds to reverse propagatiGnandé, are the phases acquired by the spin
parts of the wave functions in the channels 1 and 2, respectively.

The idea of (8) and (9) is to express the elements of the matFicgs as two rotations
about two independent axes. Then, these objects are nothing but the unitary quaternions [12].
As is known [13], quaternions make a real four-dimensional vector space and, since the two
channels 1 and 2 are supposed to be isolated, the mafriged P’ are diagonal 4 4 matrices
with the diagonal elements defined by (8) and (9).

After a great deal of algebra (see appendix 2), we have

IT|? = |au|? + |aa|® + lag|? + |aal? + (ajas + a1} + ajas + aza})
+ (ajaz + aaaj + ayasz + azaj + ajas + azay) COSAH A =61 — 0>

whereg; (i = 1, 2, 3, 4) do not depend o6y, 6, and are complicated functions 6f, r,.’j, 4t

i
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So, the problem now is that of how to calculate the additional phase/sshift 6; — 6,
which arises due to the precession of the electron spin in the periodic magnetic field of the
micromagnets.

4. Calculation of the phase shift

Consider the non-relativistic motion of the particle (electron) with the spia 1/2 in a
two-component magnetic fieldB = By + B1, By = (0, By, 0) and B; = (0, 0, B1(x)),
where B;(x) is given by (1). The spin part of the electron wave function can be considered
as a two-component vector defined by the pair of functipfig)) and x (]} )) which stand

for the probability amplitudes of the two possible orientations of the spin. The spin operator
6 (o, 0y, o) is defined in terms of the Pauli matrices:

(2 (0 (3

Thus, we can treat the mean value of the magnetic moment of the electron moving within
the channels of the microstructure as the classical quaRtity (o), its evolution under a
magnetic field being defined by the equation

drP P B
o = v P Bl
wherey = e/mec is the electron gyromagnetic constant.

In other words, the vectoP can be treated as a classical magnetic top and, if this
classical top having the initial orientatioRy = (P?, P?, P?) enters the magnetic field
B = (B,, By, B;), it begins to precess about the magnetic field with the frequeneyy B,
whereB = /{B2+ B2+ BZ}. Inthe reference frame of the electron moving with the velogity
in the space domain occupied by the magnetic fi#lglsB;, the varying field of the frequency
w(v) = 2rv/(a+b), wherea +b is the half-period of the magnetic grating, affects the electron.
This oscillating field in the reference frame rotating with the frequengy) is of the form

B, =0 By =Bo—w()/y B; = B1(x).
The components of the fiel# (v, x) can be expressed in terms of the angle, x)
between the field3 and thex-axis:
By = B(v, x) sing (v, x)
B, = B(v, x) cos¢ (v, x)
¢ (v, x) = arcsinB, (v, x)/B(v, x)).

Let us introduce now the phase of the precessing spin by means of the formula

O, x) = (ug/h) /X B(v,x)dt =y /X B(v, x) dt
0 0

and take into account the fact that the fiellg B1 are piecewise uniform. Then the phase of
the precessing spin depends linearlypé (v, r) = y B(v)t. Now the calculation of the phase
shift A6 can easily be carried out. Moreover, itis clear that under certain conditions, including
that of an appropriate structure length= m(a + b), m = 2, ..., N, electron velocity and
values of the magnetic field8y, B1, the phase shiftad = 6, — 6; can be a multiple ofr /2.
Indeed,

A9=92—91=(n+1/2)7r=y‘/By2+B§L/v n=0,12...
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where
By =By —w()/y = Bo —2nv/y(a+b) B, = Bj.

If the values ofB1, L, v, n are given, the value a8y which is needed foA6 to be equal to a
multiple of 7 /2 can be easily calculated:
27v ,  Ax%? 2m?—p?2 177
Bo = [ 1772 2 2 :| :
yla+b) y?(a+b) m

Hence, changing the external magnetic fi#lgl one can change the phase shift and the
quantum interference from constructive to destructive and back. Also, it can be seen that
AO = 6, — 6 = f(Bo, By, v) is a function of By, By, v. That is, the phase shift is
generally speaking different for electrons with different velocities. At first sight, this makes
matters worse, because it means that the ‘interference pattern’ should be blurred. One should
remember, however, that the temperature is considered to be sufficiently low. That is, the
electron distribution functiorf (E) = x (Er — E) andv = v, wherey (- - -) is the Heaviside
step-like function andE, vy are the Fermi energy and Fermi velocity, respectively. So, the
calculation by means of (3) can now be easily carried out and we have

I = (2¢/h)K(A + D CcOSAO(vr))

wherekK, A, D are coefficients depending on the peculiarities of the structure. Now it is clear
that on changind@, one can approach very strong modulation of the conductance and, since
A ~ D, the ‘contrast’ of the ‘interference pattern’ is defined only by the ratio

Ep —kgT
Er
which at a temperature of about 40 K is of the order of 90%.

5. Conclusions

A simple theory of the quantum interference due to Larmor precession of an electron spin
in a loop semiconductor mesoscopic structure is presented in this paper. Also, we assumed
here ‘ballistic spin transport'—that is, the phase-relaxation Iemg)thof the spin part of the
electron wave function is assumed to be greater than the microstructure Iengih one of

the arms of the microstructure there is an additional periodic magnetic field, the spin part of
the wave function acquires a phase shift due to additional spin precession about that field. Ifin
addition we suppose the microstructure length to be chosen to be greategfhiiris possible

to ‘wash out’ the quantum interference related to the phase coherence of the ‘orbital’ part of
the wave function, retaining at the same time that related to the phase coherence of the spin part
and, hence, reveal the corresponding conductance oscillations. By introducing a quaternion
representation of the elements of the propagation matrices, one can calculate the transmission
coefficients of the structure. It is shown that strong modulation of the conductance could be
achieved.

In conclusion, it is worth emphasizing that, in spite of the apparent similarity of this effect
and the Aharonov—Bohm one, there is a significant difference between them. The situation
is quite similar to the case of the ‘Aharonov—-Bohm effect’ with neutrons, which has been
discussed recently by Peshkin [14] and which is sometimes called the ‘scalar Aharonov—
Bohm effect’ (the SAB effect). Peshkin compared the SAB effect with the electrical version
of the usual AB effect (the so-called EAB effect) and argued that, in spite of the apparent
similarity, the SAB effect has little to do with the AB or EAB effect, because, unlike the latter,
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the former is brought about by an ordinary action of the Maxwell field and, hence, has all the
properties of all of the other local interactions and shares none of the topological features of
the AB or EAB effect. The AB effect is non-local, in that the electron experiences no force
and exchanges no momentum, energy or angular momentum with the electromagnetic field.

In our case the Hamiltonian and the equation of motion also involve a contemporaneous
Maxwell field in the domain of the electron’s position; the effect is not topological in character
and that is why we used the term ‘quantum interference due to Larmor precession of the
electron spin’ for its characterization.

Appendix 1

Here we derive formula (5) for the spin-relaxation time, which is identified with the spin-
coherence destruction due to the scattering by lattice vibrations. Recall that the model accepted
above for the phonon bath is this: we have a great nuni¥ex(1) of identical non-interacting
subsystemd3, with excitation energy; the Hamiltonian of the whole system—that is, the
subsystemd together with phonon bath—is given by (3) while the interaction Hamiltonian
H,n is given by (4). Since the interaction Hamiltonian (4) commutes with the operator (3),
the statistical operatqgr of the whole system obeys the equation

—dp()
ih——- = ints t
5 = [Hin, p0)]
with the initial condition
N

P =p.[]on

Using the explicit formula (4), we obtain the following system of finite-difference equations:
T
p(nt +71) — p(nt) = = [Hy+1, p(nT + 7] .

From this system, by means of successive approximations one has

1 2
p(nt +71) — p(nt) = % [Hp+1, p(nT)] + 5(%) (Hines [Hint, p(O)]] +-- -

Introducingp, = Sp; p, the statistical operator of the subsysteinwhere Sp(---) is the
trace operator, and supposing that

% = [ps(nT *+ 1) — p(n7)] 71
we obtain the following kinetic equation:
004 (1 ;
—pat( ) —%anb,f)([afa, 0a ()] — 2apaa’) + (b,b])([aa", pa(D)] — 2a"pa(D)a)}. (A1)

Here, the parametes; = rsfn,/ﬁz has the dimension of frequency amdl,[B] = AB — BA.
Let us note that similar equations were considered earlier in [15, 16].

In the occupation number representation, the operatou$, p, (1) are defined on the
eigenfunction space of the occupation number opetatbrits eigenfunctionsgn) are (recall

that the subsyste is a two-level system)
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t _(0 O (0 1 + (0 0
“4=10 1 “=\o o “=\1 0)

Let us now suppose that the solution of (A.1) is of the form

Then,

2
pa(t) =) pu(t)o(n) (A2)
n=1

where the matrices (n) ares (1) = a'a, 0(2) = aa’; they obey the relation
Sp{a(”)a(n/)} = ann’-

By means of these expressions, we obtaji) = Sp,{p.(t)o (n)} and, hencep;(r) and
p2(t) are the probabilities that the subsysteiis in an excited state and an unexcited one,
respectively. By means of (A.1) and (A.2), we obtain

2

pn
Y oL
~ ot

Using again the relation $p(n)o (n')} = §,,, one can transform this expression into the
following system of equations:

= —w;(bb,)(0(2) — 0 (1) p1 — w; (bub)) (0 (1) — 0(2)) pa.

9
PEL) — n((b}n) ) — (b} pa()
9
p;t(t) = w; ({(b,b) p1(t) — (bub]) p2).
From these two, it follows that; () + p2(¢) = constant, and
9
PO — o (lb) ~ Bpate)

whereB = (b}:bn> + (bnb,’[). The solution of the above equation with the initial condition
p1(t) = po < 1is of the form

t T
(b,é’n) + (po _ M) exp(—w; Bt).

pi(t) = B

We are interested in estimating the time which is needed for the subsysterachieve the
state withp; = p, = 1/2. Hence, from the above equation we have
blb, bib
1/2 — {6,0n) = (1 — M) exp(—w; Bt). (A.3)
B B
Let us recall that we suppose the subsyst@nso have equidistant spectra; then, it is well
known that
(blby) = SP(pub]by) = (exppe — 1)~
(B) = (bby) + (bub]) = coth(Be/2).
Now, it immediately follows from (A.3) that

exp(Be) —tanh(Be/2) — 1
exp(Be) — 2tanh(Be/2) — 1

t = w; Mtanh(Be/2) [ln 2+1In

H ~ w;tIn2tanh(Be/2).

This is formula (5).
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Appendix 2

Here we outline briefly how the formula f¢T'|? can be obtained. Let us start from formula
(9), where the matrixis a 4x 1 matrix describing the transmission from the left-hand end of
the structure into the channels whilds a 1x 4 matrix describing the transmission from the
channels into the right-hand end:

11

r
t= tl t=C(t, 1, t, t,).
+2

2
Here the subscripta-1, 2 stand for the channels 1, 2 and the states+) and||)(—).
Multiplying the matricesP, r, P’, v/, one can obtain forl[— PrP'r'] = M the following
expression:

1—An 0 A1z 0
M = 0 1- Ay 0 Ay
Az 0 1— Ass 0
0 Agp 0 1— Ay

where

2 / /
A]]—} ]r]]r”+1+11+2r]3r33
2 / /
A22 =F 3122’ 22 I —1 )i ) 24}’42
P.oP / : P2 !
A31 +2 “'1j 311 +21 33) 3

’ 2 /
Ay = P,2P71r42r22 + P72r44r42

2 / ’
A13 = P+1r11r13 + P+1P+2r13r33
2 ’ /
Aza = PZyraorys+ P_1P_oroary,
/ 2 /
A3z = PipPirairis + Phraaras

/ 2 ’
Ags = P,2P71r42r24 + P72r44r44.

With matrix M inverted, one gets

1— A 0 A1z 0 a7 0 a3 O
ML= 0 1- Ay 0 Aoy _[ 0 a2 0 o
A31 0 1- A33 0 31 0 o33 0
0 A42 0 1-— A44 0 042 0 44
where

11 =AML — Ass[(1 — Azo) (1 — Asg) — AzaAs))]
a13 = —(A31/A)[(1 — Ax) (1 — Ass) — A2aAyr]
azp = A1 — Aa)[(1— A1) (1 — Azg) — Az1Asg]
024 = —(A13/A)[(1 — A11)(1 — Agz) — A13A31]
a1 = —(A13/A)[(1 — A22) (1 — Asgs) — A24A4)]
azs= A1 — A1D)[(1— Az2)(1— Asg) — AzsAs)
a2 = —(Aza/ D)1~ A1) (1 — Agg) — AgiAsg]
aga= A1 — Ap)[(1— A1) (1 — Agz) — A13Az]

4

A=T]A—-An) — (1 - A1) — Asg) AasAsz — A1aAsi[(1— Azo) (1 — Aag) — AzaAsg)].
i=1

Inserting these formulae into (7), after another round of tiresome multiplication of matrices,
one gets the formula for the squared transmission coeffifigat
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